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Abstract. Tripolar vortices have been observed to emerge in two-dimensional flows
from the evolution of unstable shielded monopoles. They have also been obtained
from a stable Gaussian vortex with a large quadrupolar perturbation. In this case,
if the amplitude of the perturbation is small, the flow evolves into a circular monopo-
lar vortex, but if it is large enough a stable tripolar vortex emerges. This change
in final state has been previously explained by invoking a change of topology
in the co-rotating stream function. We find that this explanation is insufficient, since
for all perturbation amplitudes, large or small, the co-rotating stream function has
the same topology; namely, three stagnation points of centre type and two stagnation
points of saddle type. In fact, this topology lasts until late in the flow evolution. How-
ever, the time-dependent Lagrangian description can distinguish between the two
evolutions, as only when a stable tripole arises the hyperbolic character of the saddle
points manifests persistently in the particle dynamics (i.e. a hyperbolic trajectory
exists for the whole flow evolution).
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1. Introduction

The tripole is a two-dimensional flow structure consisting of a linear arrange-
ment of three vortices, of alternating sign. The whole structure rotates
in the direction of the core vortex rotation. It has been observed in the lab-
oratory in rotating [14, 15] and stratified fluid [7], where it is the product
of growth and saturation of the instability of a shielded (zero net circula-
tion) monopolar vortex. Tripole generation from unstable monopoles has also
been addressed in numerical studies [4,11]. More recently, the tripolar vortex
was observed to emerge from the destabilization of a Gaussian monopole by
a strong quadrupolar perturbation [13]. In this case, the structure does not
have total circulation equal to zero (“shielded” case), but rather can have
satellites of varying strength, in relation to the core vortex. The amplitude
of the quadrupolar component in the initial condition determines whether
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the flow will evolve into a monopole or a tripole, and the existence of a criti-
cal amplitude was conjectured [13].

A systematic parameter study with the goal of determining the critical
amplitude separating the monopole and tripole as asymptotic states is pre-
sented in [1]. There, the authors performed dozens of simulations at different
Reynolds numbers and perturbation amplitudes, and isolated a threshold lead-
ing to the tripole. The relaxation timescale was also investigated, as well as the
stability properties of the tripolar structure and the evolution of the azimuthal
modes. Here, we take an alternative approach to investigate the conditions
leading to the persistence of the negative inclusions as satellite vortices, or
their straining and mixing, leading to axisymmetrization. For various combi-
nations of parameters, we analyze the essentially time-dependent Lagrangian
flow geometry of the vortex, that is, the set of hyperbolic trajectories of the
velocity field and their stable and unstable manifolds.

The problem of the perturbed Gaussian vortex is set up by calculating the
relaxation of an initial condition consisting of the following vorticity field:

ω(x) =
1
4π

exp
(
−|x|2

4

)
+
δ

4π
|x|2 exp

(
−|x|2

4

)
cos(2θ). (1)

The first term on the right-hand side of (1) corresponds to the normally
stable Gaussian vortex; the second term is a quadrupolar perturbation char-
acterized by its amplitude, δ. In [13], three values of δ = 0.02, 0.1, 0.25 were
used for a Reynolds number Re = Γ/ν = 104, where Γ = 1 is the circula-
tion of the base vortex. It was found that for the larger amplitude value used,
δ = 0.25, the flow does not relax to an axisymmetric state, but rather develops
into a quasi-steady, rotating tripole. This result was remarkable for two rea-
sons: it contradicted the prevailing assumption that non-axisymmetric pertur-
bations to a stable monopole would decay and axisymmetrize; and, it showed
that the tripole could be generated other than as a result of the instability
of shielded monopoles. The authors of [13] suggested that for large ampli-
tudes the negative part of the initial perturbation resists mixing, and forms
the satellites of the tripole, due to the creation of a separatrix in the stream-
line pattern observed in a reference system that co-rotates with the vortex
structure.

The geometry of the co-rotating streamfunction is commonly used to ex-
plain diverse processes in two-dimensional vortex dynamics. It was used to
explain vortex axisymmetrization in [9], and vortex merger in [5, 10] and
other works. However, it has been pointed out that there is a flaw in this ap-
proach when it is applied to flows which are inherently time dependent [16,17].
One needs to compute the Eulerian flow geometry in a reference frame chosen
so that the flow appears to be stationary, but this can only be done for flows
which translate or rotate steadily. In truly time-dependent flows there are no
co-moving frames, and the best one can do is find a frame where the flow is ap-
proximately stationary. This can be done by different methods, the choice of
which is arbitrary; e.g., one method consists in approximating stream contours
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by ellipses, and then observing the angular change of the main axis of the el-
lipse over time [10]; a second method is based on calculating second moments
of vorticity [13]; a third method minimizes a quantity which measures how
closely contours or ω and ψ are matched [6]. The important point to remember
is that there is not a unique frame which co-rotates with a time-dependent
vortex structure.

A more appropriate analytical technique for the study of unsteady velocity
fields is the Lagrangian flow geometry. By looking at the hyperbolic trajecto-
ries and their stable and unstable manifolds, calculated from the numerically
generated time evolving velocity fields, we make several observations regard-
ing the tripole. We also note that the Lagrangian and Eulerian flow geometries
differ appreciably, and thus it is not correct to ascribe the permanence of the
satellites to the formation of a “critical separatrix”, as argued previously [13].
In fact, the separatrices are present at the initial time, even in cases where
the flow axisymmetrizes. How close the flow is to steady-state is assessed
using scatter plots of vorticity versus stream function, as shown in Fig. 2.
As a quasi-steady tripole is approached, the Lagrangian and Eulerian geome-
tries are more alike, as in the last frame of Figs. 4(a) and 4(b). Additional
observations for various cases will be presented below, but first we describe in
§2. the numerical methods used.

2. Numerical methods

2.1. The vortex method

The time evolution of flow fields described in this work was computed with a
vortex method especially adequate for high-Reynolds number flows [2]. The
method is completely grid-free and is characterized by very low numerical
diffusion and freedom from stability constraints in the choice of a time step
(i.e., there is no equivalent to the Courant–Friedrichs–Lewy condition on this
method). We begin by establishing an initial vorticity field, which evolves
governed by the vorticity transport equation:

∂ω

∂t
+ u · ∇ω = ν∆ω. (2)

The evolution equation is solved by discretizing the vorticity field into discon-
nected elements, or particles of vorticity, each one represented by a position
vector and a local distribution of vorticity. The discretized vorticity field is ob-
tained from the sum of all particle contributions,

ω(x, t) ≈ ωh(x, t) =
N∑

i=1

Γi(t)ζσ (x− xi(t)) , (3)

where xi is the particle position, Γi is its circulation, and the core size is
σ. The characteristic distribution of vorticity ζσ (commonly called the cutoff
function) is a Gaussian: ζσ(x) = 1/(2πσ2) exp

(
−|x|2/2σ2

)
.
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The vorticity–velocity formulation is complete after obtaining the velocity
at each point (each particle location) using the Biot–Savart law, which in 2D
is expressed by:

u(x, t) =
−1
2π

∫
(x− x′)× ω(x′, t)k̂

|x− x′|2
dx′. (4)

The numerical method is implemented by integrating the particle trajecto-
ries using the velocity obtained from (4), and incorporating the effects of vis-
cosity by changing the local distribution of vorticity of each particle. The most
prevalent viscous method applies a change to the circulation strength (called
particle strength exchange, or PSE method), but we use an alternative method
which applies the change to the particle radius. It is named core spreading
method, and it satisfies the diffusion equation at each particle exactly by grow-
ing σ2 linearly according to dσ2/dt = 2ν. To maintain the accuracy of dis-
cretization over a time marching calculation, a spatial adaptation scheme is
applied. It is based on radial basis function interpolation of the vorticity field,
to obtain a new, well-overlapped particle set every few time steps. The core
sizes are also reset at this stage to ensure a convergent core spreading vortex
method. The method is described in detail in [2].

2.2. Finding the Lagrangian geometry

Figure 1 shows that the flow is essentially time dependent; therefore the re-
lation between particle trajectories and the geometry of the instantaneous
velocity field is not straightforward. We expect, however, that if a saddle
point exists long enough and the velocity field around it changes slowly then
a hyperbolic particle will exist in its neighborhood. This condition is satis-
fied uninterruptedly in all cases studied here, therefore the hyperbolic particle
and its manifolds at any given time t can be computed by the method de-
scribed below. With suitable variations, this method has been extensively used
for velocity fields defined analytically or given as data sets, and with periodic,
quasi-periodic or arbitrary time dependence [3, 8, 12,16].

The first step is to compute Ψ , the stream function observed in a system
where the flow is approximately steady. This is given by the simple transfor-
mation Ψ = ψ + 1

2Ω
[
(x− xc)2 + (y − yc)2

]
, where ψ is the stream function

obtained by the numerical calculation, Ω is the approximate angular veloc-
ity of the vortex and (xc, yc) is its center of rotation. Because of the initial
symmetry, the vortex center is also the center of rotation, so we only need
to determine the value of Ω. The value chosen is the one that minimizes the
Jacobian J(Ψ, ω). Note that other methods are available but they give slightly
different results [6, 10,13].

The second step is to determine the geometry of the (approximately) co-
rotating stream function Ψ ; that is to say, locate the saddle stagnation points
and the streamlines associated to them (see [16] for the method used here).
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(a) δ = 0.1

(b) δ = 0.175

(c) δ = 0.25

Fig. 1. Plots of logarithm of |ω| for different amplitudes of perturbation at Reynolds
number Re = 3000.

Finally, the stable manifold is obtained by computing the evolution,
from time t + ∆t to time t, of a short line which crosses the saddle point
of Ψ(x, y, t+∆t) in the attracting direction; and the unstable manifold is ob-
tained computing the evolution, from time t−∆t to time t, of a short line which
crosses the saddle point of Ψ(x, y, t −∆t) in the repelling direction. The po-
sition of the hyperbolic particle is given by the intersection of the manifolds.

3. Numerical Results

We present results for several combinations of parameters, for which we have
calculated the evolution of the vorticity field and have obtained the flow geom-
etry, using the methods described in the previous section.

For a given Reynolds number, as the amplitude of the initial quadrupolar
perturbation, δ, is increased the flow evolves in the following ways. For small
δ, the perturbation winds-up and decays and the flow quickly axisymmetrizes.
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There is next a range of values of δ for which the flow seems to form a “tran-
sient tripole”, in which weak satellites of negative vorticity only survive for a
short time and decay due to diffusion. For larger values of δ, the tripole is able
to reach a quasi-steady state, still decaying by diffusion, but surviving for sev-
eral turnover periods. To illustrate these three “regimes”, Fig. 1 shows plots
in grey-scale of the logarithm of |ω| for three different runs with Re = 3000;
the dark line indicates where the vorticity changes sign.

For the first case in Fig. 1, the negative vorticity inclusions are quickly
stretched and “squeezed” inside the zero-vorticity contour; the negative per-
turbation is expelled to larger radii, and the flow axisymmetrizes. In the mid-
dle case, the zero-vorticity contour pinches as it spirals, isolating momentarily
two small inclusions of negative vorticity (see Fig. 1(b), t = 600). These in-
clusions are so small and weak that they disappear by t = 700 and the flow
proceeds to axisymmetrize. For the larger value of δ, the isolated negative in-
clusions are larger and stronger, and hence the tripole reaches a quasi-steady
state, decaying slowly; the satellites in this case survive until t = 1500.

A good diagnostic to reveal that the flow has reached a steady-state is the
scatter plot of (ω, ψ). For steady, inviscid flows, the Jacobian J(ψ,∆ψ) = 0,
which implies the existence of some functional relation between streamfunc-
tion and vorticity. In any rotating frame of reference, a scatter plot is obtained
by simply plotting the value of vorticity versus that of the streamfunction on
the points of a sampling grid. A functional relation is indicated by very little
scatter of the points, implying that the tripole is close to stationary in that
frame of reference. As shown in Fig. 2, at t = 800 after the tripole is formed,
the flow is close to steady (right-most plot) for both cases shown.

Fig. 2. (ω, ψ) scatter plots for tripoles with different parameters. Two left columns:
uncorrected ψ; two right columns: ψ corrected for the tripole rotation. At t = 800,
the structure is quasi-steady.
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δ=0.25 δ=0.175 δ=0.1

(a) Re = 3 × 103

δ=0.2 δ=0.15 δ=0.1

(b) Re = 104

Fig. 3. Stable manifolds of the hyperbolic trajectories for three different amplitudes
of the initial perturbation. A quasi steady tripole is formed for the case with larger
amplitude, whereas for the smaller amplitudes the flow axisymmetrizes. For the mid-
value of amplitude, small transitory satellites are formed and then quickly disappear.

The scatter plots in Fig. 2 are shown for the uncorrected (two left columns)
and corrected streamfunction (two right columns). As mentioned before, the
vortex continuously changes its shape while rotating with a variable angular
speed. Thus, the rotating frame for the corrected streamfunction is chosen
so that the Jacobian J(ψ,∆ψ) is minimized, and thus it is the frame in which
the structure is closest to steady, at any given time. As mentioned before,
there are other choices of rotating frame.

The plots in Figs. 3(a) and 3(b) show the vorticity in logarithmic contours
on a grey scale, and the stable manifolds at the initial time, for various runs.
The arrows point in the direction of the flow on the manifold, and the black
dot indicates the position of the hyperbolic trajectory. For all different values
of δ and Re shown, most of the vorticity in the satellites lies between the
two manifolds. However, only in the left-most cases, with the larger values of
δ, does a tripole form. In these two cases, the tripole reaches a quasi-steady
state, which can be confirmed from the scatter plot, Fig. 2(b), where the (ω, ψ)
points show little scatter at t = 800.

We now present the evolution of the flow geometry for two cases that
develop a tripole, with different Reynolds number. Fig. 4(a) corresponds to
Re = 3000, and Fig. 4(b) to Re = 104. The stable and unstable manifolds are
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t=0 t=100 t=200 t=300

t=400 t=500 t=600 t=700

(a) Re = 3 × 103, and δ = 0.25

t=0 t=100 t=200 t=300

t=400 t=500 t=600 t=700

(b) Re = 104, and δ = 0.2

Fig. 4. Stable and unstable manifolds (thick and thin lines, respectively) and
Eulerian separatrices (dotted) for the time-evolving tripole with different parame-
ters.

shown for different time slices; the Eulerian representation of the flow geom-
etry — given by the separatrices in a frame rotating with the instantaneous
angular velocity — is shown in dotted lines.

Irrespective of the amplitude of the perturbation, the Eulerian flow geom-
etry has the same topology: three stagnation points of centre type, two saddle
points, and the corresponding separatrices. Therefore, the Eulerian flow geom-
etry does not distinguish whether the vortex will develop into a tripolar or a
monopolar vortex. In conclusion, it is not correct to ascribe the persistence
of the satellites in the tripole to the formation of a critical separatrix, as
suggested before [13].
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δ=0.2 δ=0.15 δ=0.1

Fig. 5. Eulerian geometry at t = 500 for three cases with Re = 104.

The non-distinguishing nature of the Eulerian geometry is also seen
in Fig. 5, which shows the separatrices at a time t = 500 for three cases
with Re = 104. Irrespective of the amplitude of the perturbation, the topol-
ogy of the co-rotating streamfunction is the same, with three centres and one
saddle stagnation point. The difference for a case leading to a tripole can only
be seen in the Lagrangian geometry, where the hyperbolic trajectories exist
for the whole evolution.

4. Conclusion

We have obtained the Lagrangian flow geometry for several cases of non-
shielded tripole evolution. The non-shielded tripole is characterized by a
critical level of the non-axisymmetric component in the initial condition be-
low which the flow evolves to axisymmetry, and above which a quasi-steady
tripole is obtained. The existence of such a threshold had been previously
ascribed to the appearance of a critical separatrix in the co-rotating stream-
function. By obtaining and comparing the Eulerian and Lagrangian geometries
of the flow, we find that the Eulerian separatrices cannot distinguish between
a tripole and a mildly perturbed monopole leading to axisymmetrization.
Only in the Lagrangian features of the flow can a distinction be found, where
for the tripole hyperbolic trajectories are present during the whole evolution.
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